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Hopping diffusion of two coupled particles in the random trap model
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We show that the hopping dynamics of two strongly connected particles can be mapped exactly to single
particle dynamics. In this way we are able to calculate the exact asymptotic diffusion coefficient of two
connected particles on a linear chain in the random trap model. In particular we calculate the diffusion
coefficient for exponentially distributed site energies and show that there exists a critical temperature below
which a subdiffusive behavior appears. It turns out that this critical temperature is twice higher than the critical
temperature in the single particle case@S. Havlin, B. L. Trus, and G. H. Weiss, J. Phys. A: Math. Gen.19, L817
~1986!#.
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I. INTRODUCTION

Hopping diffusion of classical particles in quenched ra
dom media has been the subject of many investigation
the past years~see for reviews@1–5#!. In most of these in-
vestigations the random medium was simplified by a
called random energy model where the underlying struc
is translationally invariant and the disorder is introduced
defining disordered jump rates between the lattice sites c
sen randomly from a given distribution~examples are the
random trap model, the random barrier model, etc.!. The
asymptotic behavior of single particle diffusion in such tran
lationally invariant disorder models is at least in one dime
sional cases completely understood@6#. However, the de-
scription of the dynamics of interacting particles such as
dynamics of lattice gases@7,8#, single file diffusion@9#, poly-
mer chains@10–15#, etc. even in lattices with uniform tran
sition rates is much more complex and is the subject of m
recent and current investigations. The subject of this pape
the diffusion of two coupled particles on a one dimensio
lattice with random site energies. A model where the p
ticles are connected by a attracting harmonic potential
investigated recently@16#. This is apparently the simples
model of coupled hopping particles and can be seen a
starting point of understanding the diffusion of polym
chains in random media. The diffusion of polymer chains
random media is one of the most fundamental and impor
quantities and has a broad application in material, biolog
and physical science and also in industrial purposes.

In the following section we will introduce the model. I
Sec. III we derive the exact diffusion coefficient of the cen
of mass by mapping the dynamics of the two coupled p
ticles into a single particle case. In the last section we c
clude and discuss the case of longer chains.

II. MODEL

Consider two connected particles which perform contin
ous time random walk~CTRW! on a one dimensional lattic
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in the following way. Each particle has its own clock aft
which it jumps to a neighboring site under the condition th
the distance between the two particles is no longer than
lattice site ~see Fig. 1!. The particles can be either at th
same site or siting on two neighboring sites. Each lattice
i corresponds to an energy trapEi , where the particle is
trapped and try to release at each time unit~random trap
model!. Therefore the waiting time distribution of the pa
ticle at sitei is an exponential function@17# which depends
on the depth of the trap at this site:

c i~ t !5
1

t i
e2t/t i, ~1!

wheret i is the mean waiting time of a particle at sitei. The
exponential factor represent the probability that the part
has not yet jumped until timet and the prefactor is the jump
rate of the particle. The jump rateG i depends on temperatur
and on the energy trap at sitei,

G i5G0e2Ei /kBT, ~2!

whereG0 is the attempt frequency,kB is the Boltzmann fac-
tor andT the temperature of the system.

To be precise the jump direction of a particle depends
the position of the two particles. If the particle performin
the jump is at sitei and the other particle at sitej than the
jump rate from sitei to a nearest neighboring sitef is given
by

G i , f5G0 exp@2bVi , f~ i , j !#, ~3!

whereb51/(kBT) and

FIG. 1. The allowed jumps of two connected particles. The d
tance between the two particles must not be more than one la
site.
©2002 The American Physical Society03-1



o
th
nt
ai
u

as

r

m

he

th
e
s

te
n
tic
te
io
la
es

and
ite

nter
w-

al

th
si
ig

-

r of

R. DESCAS AND K. MUSSAWISADE PHYSICAL REVIEW E66, 051103 ~2002!
Vi , f~ i , j !55
` if u j 2 f u.1,

Ei if j 5 f ,

Ei2
1

b
lnS 1

2D if i 5 j .
~4!

III. MAPPING TO A SINGLE PARTICLE PICTURE AND
EXACT DIFFUSION COEFFICIENT OF THE

CENTER OF MASS

Now consider the motion of the center of mass of tw
connected particles. Due to the independent jumps of
particles the motion of the center of mass can be represe
by an uncorrelated hopping of a single particle on a ch
with additional sites in between the sites of the previo
chain ~see Fig. 2!.

We number the sites in the chain of the center of m
picture in a way where the center of mass is on an even
odd site when the two particles are at the same position o
neighboring positions, respectively~see Fig. 2!. The jump
rates in the center of mass picture are related to the ju
rates of the original model in the following way:

r 2i5G i , l 2i 115G i , r 2i5G i , l 2i 115G i 11 , ~5!

wherer n , l n are the jump rate of the center of mass to t
right and to the left, respectively.

The master equation which gives the time evolution of
conditional probabilityPn(t) to find the center of mass at th
site n at time t if it was at time 0 at site 0 can be written a

d

dt
Pn~ t !5r n21Pn211 l n11Pn112~r n1 l n!Pn . ~6!

A numerical solution and the comparison with compu
simulations are given in Fig. 3. The dynamics of the co
nected particles are mapped to the dynamics of one par
in a different energy landscape which we will construct la
on. In this way we can use the exact result of the diffus
coefficient of a single particle in a one dimensional trans
tional invariant lattice with arbitrary quenched jump rat
@18–20#

D5H 1

r nPn
eqJ 21

, ~7!

FIG. 2. Mapping to the single particle case by considering
center of mass of the two connected particles. The odd or even
represent the configurations where the particles are sitting on ne
boring sites or at the same position, respectively.
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where the curly brackets indicate the disorder average
Pn

eq represents the equilibrium occupation probability at s
n and it is given by

Pn
eq5

exp~ben!

Z
. ~8!

Z5$exp(ben)% is the partition function anden is the positive
counted energy levels in the energy landscape of the ce
of mass which can be constructed recursively in the follo
ing way ~see Fig. 4!:

e2i5e2i 212Ei1Ei 11 , ~9!

e2i 115e2i2Ei1Ei 11 . ~10!

Solving these recursive relations and settinge15E150
we find a simple relation to the energy levels in the origin
random trap model

e2i5Ei1Ei 11 , ~11!

e2i 1152Ei 11 . ~12!

e
tes
h-

FIG. 3. Mean square displacement~arbitrary units! versus time
~arbitrary units! in a double logarithmic plot where numerical re
sults of the master equation~6! ~dashed line! are compared to the
Monte Carlo simulations~1 signs! for an exponentially distributed
energy level atT53 and mean energy levels51.

FIG. 4. The construction of the energy landscape in the cente
mass picture.
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We are interested in dynamics at equilibrium where
detailed balance condition has to be valid and this can
proved

P2i
eqr 2i5

1

Z
eb(Ei1Ei 11)e2bEi

5
1

Z
ebEi 11

5
1

Z
e2bEi 11e2bEi 11

5P2i 11
eq l 2i 11 . ~13!

The diffusion coefficient now takes the following form:

D5a2$ebe%e
21$e2bE%E

21 . ~14!

The first disorder average on the right side is the inve
partition function and the second is the disorder average o
the ‘‘weighted’’ jump ratesZrnPn

eq which are simplified by
the detailed balance relation~13!. The use of Eqs.~11! and
~12! leads to the following form of the diffusion coefficien

D5a2F1

2
$eb(E1E8)%E,E81

1

2
$e2bE%EG21

$e2bE%E
21 ,

where the indices at the curly brackets indicate the param
of the disorder average. The first disorder average is simp
double integration over the distribution of the energies.
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IV. EXAMPLE: EXPONENTIAL DISTRIBUTED
ENERGY TRAPS

In this section we consider a disorder model where
traps are distributed by

r~E!5
1

s
expS 2

E

s D , ~15!

wheres is the mean energy.
In this model it is shown that the single particle diffusio

exhibits a dynamical phase transition atTc5s/kBT @21#.
The diffusion coefficient in the two particle case exhib
also a dynamical phase transition but at a higher tempera

FIG. 5. Comparison of the theory~solid line! and Monte Carlo
simulations~dots! in an Arrhenian plot where the inverse temper
ture ~arbitrary units! is plotted versus the logarithm of the diffusio
coefficient ~arbitrary units!. The case of single~or free! particle
diffusion is also compared to the case of the coupled particles.
energy levels are distributed randomly from an exponential dis
bution.
D5H 1
2 ~11bs!@~122bs!211~12bs!22#21 kBT.2s

0 kBT,2s.
~16!
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In Fig. 5 one can see the good agreement of the result of
~16! and Monte Carlo simulations. The deviation of the la
points are due to the very slow dynamics of the two coup
particles. At low temperatures the linear regime of the me
square displacement is reached after a very long time.

V. DISCUSSION

We have seen that the hopping dynamics of two c
nected particles as modeled in Sec. II on a linear chain w
arbitrary jump rates can be reduced into single particle
namics by considering the dynamics of the center of ma
This mapping allows the derivation of the exact diffusi
coefficient. In the case of exponential distributed ene
traps there occurs a dynamic phase transition such as in
single particle case where the critical temperature is a fa
of two smaller. In the model considered in this paper,
center of mass is representing directly the two configu
q.
t
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-
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tional states of the connected particles. One configuratio
where both particles are sitting at the same site and the o
is where the particles are sitting on neighboring sites. Due
this fact the dynamics of the two connected particles co
be described fully by the dynamics of the center of ma
This is not possible anymore if one considers longer cha
where the configurational state of the chain is not represe
by the center of mass in a unique way. Here other quanti
should be considered which can represent all the states.
the ‘‘multistate random walk’’ of this quantity can then b
projected to the center of mass in order to find its diffusi
coefficient.
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@9# C. Rödenbeck, J. Ka¨rger, and K. Hahn, Phys. Rev. E57, 4382
~1998!.

@10# S.F. Edwards and M. Muthukumar, J. Chem. Phys.89, 2435
~1988!.

@11# M.E. Cates and C. Ball, J. Phys.~France! 49, 2009~1988!.
05110
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