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Hopping diffusion of two coupled particles in the random trap model
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We show that the hopping dynamics of two strongly connected particles can be mapped exactly to single
particle dynamics. In this way we are able to calculate the exact asymptotic diffusion coefficient of two
connected particles on a linear chain in the random trap model. In particular we calculate the diffusion
coefficient for exponentially distributed site energies and show that there exists a critical temperature below
which a subdiffusive behavior appears. It turns out that this critical temperature is twice higher than the critical
temperature in the single particle cd§e Havlin, B. L. Trus, and G. H. Weiss, J. Phys. A: Math. GE9).L817
(1986].
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[. INTRODUCTION in the following way. Each particle has its own clock after
which it jumps to a neighboring site under the condition that
Hopping diffusion of classical particles in quenched ran-the distance between the two particles is no longer than one
dom media has been the subject of many investigations ifattice site(see Fig. 1 The particles can be either at the
the past yearg¢see for reviewg1-5]). In most of these in- same site or siting on two neighboring sites. Each lattice site
vestigations the random medium was simplified by a sd corresponds to an energy tr&p, where the particle is
called random energy model where the underlying structurérapped and try to release at each time uréindom trap
is translationally invariant and the disorder is introduced bymode). Therefore the waiting time distribution of the par-
defining disordered jump rates between the lattice sites chdicle at sitei is an exponential functiofil7] which depends
sen randomly from a given distributiofexamples are the on the depth of the trap at this site:
random trap model, the random barrier model, )et€he
asymptotic behavior of single particle diffusion in such trans- 1
lationally invariant disorder models is at least in one dimen- Pi(t)= —e U, (1)
sional cases completely understog@]. However, the de- i
scription of the dynamics of interacting particles such as the
dynamics of lattice gaség,8], single file diffusion9], poly- ~ wherer; is the mean waiting time of a particle at siteThe
mer chaind10-15, etc. even in lattices with uniform tran- €xponential factor represent the probability that the particle
sition rates is much more complex and is the subject of man{as not yet jumped until timeand the prefactor is the jump
recent and current investigations. The subject of this paper igte of the particle. The jump rat§ depends on temperature
the diffusion of two coupled particles on a one dimensional@nd on the energy trap at site
lattice with random site energies. A model where the par-
ticles are connected by a attracting harmonic potential was I'=Tge Ei'keT 2
investigated recently16]. This is apparently the simplest
model of coupled hopping particles and can be seen as
starting point of understanding the diffusion of polymer
chains in random media. The diffusion of polymer chains in
random media is one of the most fundamental and importa
guantities and has a broad application in material, biologic
and physical science and also in industrial purposes.

\ﬁherel“o is the attempt frequenciyg is the Boltzmann fac-
tor andT the temperature of the system.

To be precise the jump direction of a particle depends on
he position of the two particles. If the particle performing
he jump is at sitéd and the other particle at sifethan the

f . o jump rate from sita to a nearest neighboring sitdés given
In the following section we will introduce the model. In Jump g 9 g

Sec. Il we derive the exact diffusion coefficient of the centerby
of mass by mapping the dynamics of the two coupled par- o
ticles into a single particle case. In the last section we con- Fii=Toexd —BVi(i,)], ©)
clude and discuss the case of longer chains.
where 8=1/(kgT) and

Il. MODEL
¥ N\
Consider two connected particles which perform continu- I/’Sf\‘/&l . ./\:Q.
ous time random walkCTRW) on a one dimensional lattice ! T Y\/Y T T T * 1

FIG. 1. The allowed jumps of two connected particles. The dis-
*Present address: Institut rfiFestkoperforschung, Forschungs- tance between the two particles must not be more than one lattice
zentrum Jlich, 52425 Jlich, Germany. site.
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FIG. 2. Mapping to the single particle case by considering the
center of mass of the two connected particles. The odd or even site
represent the configurations where the particles are sitting on neigh
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FIG. 3. Mean square displacemdatbitrary unit$ versus time
(arbitrary unit$ in a double logarithmic plot where numerical re-
sults of the master equatid) (dashed lingare compared to the
Monte Carlo simulationg+ signg for an exponentially distributed
energy level al=3 and mean energy level=1.

IIl. MAPPING TO A SINGLE PARTICLE PICTURE AND
EXACT DIFFUSION COEFFICIENT OF THE
CENTER OF MASS

Now consider the motion of the center of mass of two h h \v brackets indi he disord d
connected particles. Due to the independent jumps of th¥/n€re the curly brackets indicate the disorder average an

particles the motion of the center of mass can be representéad?q represents the equilibrium occupation probability at site
by an uncorrelated hopping of a single particle on a chaif? @nd it is given by
with additional sites in between the sites of the previous
chain(see Fig. 2.

We number the sites in the chain of the center of mass
picture in a way where the center of mass is on an even or ) . ) ) .
odd site when the two particles are at the same position or &= {€XP(Bey)} is the partition function and,, is the positive
neighboring positions, respectivelgee Fig. 2 The jump counted energy levels in the energy Iand_scape of the center
rates in the center of mass picture are related to the jume mass whlch.can be constructed recursively in the follow-
rates of the original model in the following way: ing way (see Fig. 4

pei= M
n Z "

®

€= €1~ E+Ej;q, 9
roi=li, =T, r=T, ly1=Titq, (5
_ €+1= €~ Ei+Ejiq. (10)
wherer,, |, are the jump rate of the center of mass to the Solving these recursive relations and setting=E;=0

right and to the left, respectively. we find a simple relation to the energy levels in the original
The master equation which gives the time evolution of therandom trap model

conditional probabilityP,,(t) to find the center of mass at the
site n at timet if it was at time O at site O can be written as ei=Ei+E.q, (11
d €2i+1=2Ei ;1. (12
mPn(t):rn—lpn—1+|n+1pn+1_(rn+|n)Pn- (6)

A numerical solution and the comparison with computer
simulations are given in Fig. 3. The dynamics of the con-
nected particles are mapped to the dynamics of one particle
in a different energy landscape which we will construct later
on. In this way we can use the exact result of the diffusion
coefficient of a single particle in a one dimensional transla-
tional invariant lattice with arbitrary quenched jump rates
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FIG. 4. The construction of the energy landscape in the center of
mass picture.
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We are interested in dynamics at equilibrium where the 0
detailed balance condition has to be valid and this can be free particles
proved -1

1 a coupled particles
pgﬁZi:ZeB(EﬁEiu)e*ﬁEi E

1
— —@aBEi1
z¢"

= lezﬁEiJrle_.BEHl
z FIG. 5. Comparison of the theofgolid line) and Monte Carlo
(13) simulations(dot9 in an Arrhenian plot where the inverse tempera-
ture (arbitrary unitg is plotted versus the logarithm of the diffusion
coefficient (arbitrary unit3. The case of singldor free particle
diffusion is also compared to the case of the coupled particles. The
energy levels are distributed randomly from an exponential distri-
bution.

=P alaisa.
The diffusion coefficient now takes the following form:

D=a?{ef} He FEICL. (14)

IV. EXAMPLE: EXPONENTIAL DISTRIBUTED

The first disorder average on the right side is the inverse
ENERGY TRAPS

partition function and the second is the disorder average over
the “weighted” jump ratesZr,P5? which are simplified by In this section we consider a disorder model where the
the detailed balance relatiqi3). The use of Eqs(11) and  traps are distributed by
(12) leads to the following form of the diffusion coefficient: 1 E
1 1 4 P(E)ZEEX%—;), (15
D=a? - {e/E E Nt {5l | {e PRt .
2 2 whereo is the mean energy.
In this model it is shown that the single particle diffusion
where the indices at the curly brackets indicate the parametexhibits a dynamical phase transition Bt=o/kgT [21].
of the disorder average. The first disorder average is simply @he diffusion coefficient in the two particle case exhibits
double integration over the distribution of the energies. also a dynamical phase transition but at a higher temperature:

D:{%(1+,80)[(1—230)—1+(1—3a)—2]—1 KeT>20 "

In Fig. 5 one can see the good agreement of the result of Edional states of the connected particles. One configuration is
(16) and Monte Carlo simulations. The deviation of the lastwhere both particles are sitting at the same site and the other
points are due to the very slow dynamics of the two coupleds where the particles are sitting on neighboring sites. Due to
particles. At low temperatures the linear regime of the meairthis fact the dynamics of the two connected particles could
square displacement is reached after a very long time. be described fully by the dynamics of the center of mass.

This is not possible anymore if one considers longer chains,

where the configurational state of the chain is not represented

V. DISCUSSION by the center of mass in a unique way. Here other quantities

should be considered which can represent all the states. And
ﬁhe “multistate random walk” of this quantity can then be
projected to the center of mass in order to find its diffusion
oefficient.

We have seen that the hopping dynamics of two con
nected particles as modeled in Sec. Il on a linear chain wit
arbitrary jump rates can be reduced into single particle dy
namics by considering the dynamics of the center of mass:
This mapping allows the derivation of the exact diffusion
coefficient. In the case of_exponentlal d_l_strlbuted energy ACKNOWLEDGMENTS
traps there occurs a dynamic phase transition such as in the
single particle case where the critical temperature is a factor We would like to thank Professor A. Blumen, Dr. Chris-
of two smaller. In the model considered in this paper, thetian von Ferber, Priv. Dotz. Dr. Gunter Sd¢hyand Dr.
center of mass is representing directly the two configuraK.P.N. Murthy for discussions.
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